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This module deals with the important topic of how one evaluates an
estimated model, determines if it is sufficient, and evaluates the
support from data.
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For a hypothesized model, there are two questions we ask:

(1) Are we missing important links (i.e., ignoring important
processes)?

(2) Are all the included links supported by the data?

)
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For unsaturated networks, we have two different, though related, issues
to consider, the first being a bit novel.




Many indices have been developed for evaluating model-data fit.
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> summary (mod.1l.fit, fit.measures=T)

Minimum Function Test Statistic
Degrees of freedom
P-value (Chi-square)

Model test baseline model:
Minimum Function Test Statistic
Degrees of freedom
P-value

User model versus baseline model:
Comparative Fit Index (CFI)
Tucker-Lewis Index (TLI)

Loglikelihood and Information Criteria:
Loglikelihood user model (HO)
Loglikelihood unrestricted model (H1)

Number of free parameters

Akaike (AIC)

Bayesian (BIC)

Sample-size adjusted Bayesian (BIC)

Root Mean Square Error of Approximation:

RMSEA
90 Percent Confidence Interval
P-value RMSEA <= 0.05

Standardized Root Mean Square Residual:
SRMR
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I don’t expect you to be able to read all this. For now I just want to
make the point that lavaan will give you a great deal of information if
you ask for it using “fit. measures=T" in the summary command.




There is even more!

> fitMeasures (mod.l.fit)

fmin, chisq, df, pvalue

baseline.chisq, baseline.df, baseline.pvalue

cfi

tli

nnfi

rfi

nfi

pnfi

ifi

rni

logl, unrestricted.logl

aic

bic

ntotal

bic2

rmsea, rmsea.ci.lower, rmsea.ci.upper, rmsea.pvalue,
rmr
rmr_nomean

SEmE L.e., there has been a LOT of

srmr_nomean

cn 05, cn 01 work done on model fit!

gfi
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Actually, lavaan calculates even more fit indices, which requires a
different command to obtain “fitMeasures(fit.object)?

Again, I don’t expect you to read all this. For now just know that
SEMers have been preoccupied with this topic since the early 1970s.

Note, in this module I will provide you with a practical approach to
evaluating models. There are many different approaches that can be
used and | fear it will be distracting to you if I cover a broad variety of
perspectives. So, | am, for now, ignoring many of the options, while
providing a sufficient set of test procedures for the basic task.




Model selection is a “Decision Problem™.

(1) In SEM, we seek to make a decision based on a priori causal
knowledge and the weight of the data.

hypothesized

cause
Theoretical knowledge, Statistical inference
causal assumptions, > | < and weight of new
and hypotheses. evidence.
causal
inferences

(2) We are not null hypothesis testing, but evaluating theory.
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We should not expect typical data sets to be our definitive source of
conclusions for causal models. This seems like a radical idea, but the
current data set is not our total knowledge on a subject. Causal
modeling has to be built through knowledge accumulation.




Question 1: Are we missing important links?
The concept of Goodness of Fit (GOF)

)

With network models, discovering new links = discovering new
processes at work.
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A minimum requirement for network models under global estimation is
that no links of major importance are omitted. If they are we should not
believe the parameter estimates. DON’T use such models for
interpretation.




Evaluating GOF involves comparing a model to one with perfect
fit (a saturated model).

1 hesized Model Saturated Model Saturated Model
ypothesized Mode (one option) (second option)
V2 Vi Vv, [* Vi V> Yi

*~

« From an “analysis of covariance relationships™ viewpoint, the question
is how well our estimates reconstruct the observed covariances.

* From a scientific standpoint, the question is whether we are omitting any
important processes (linkages) from our model. = USGS

Under global estimation, our comparison is to a saturated model. The
reason is that saturated models permit every covariance to be
explained, so our Fml fit function goes to zero.

For an unsaturated model to be “sufficient” it needs to allow things to
“mostly add up”.

From a local-estimation approach our question is only, “do the implied
conditional independences hold”. These two perspectives ought to
converge in the majority of cases.




The Model Fit Function (X?) is the most basic index for globally
estimated models

The Model Fit Function X7 .

The discrepancy function, F,,, is used to calculate a Model Fit Function
(X?), as follows:

X2 =n-1(Fy;)

Here, n refers to the sample size, thus X7 is a direct function of sample
size.

Because X° follows a chi-square distribution, it can be treated as a classic
test statistic.
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It was noted early on in modern SEM that the fit function follows a
chi-square distribution. We calculate our model “Chi-square statistic”
directly from the model discrepancy, summed over the samples.

Important here is the single-degree-of-freedom criterion, which is a
handly device in SEM.




A saturated model has an F,;, = 0, and thus, X =0

Saturated Model Unsaturated Model

A A

An unsaturated model will have a positive model fit function value.
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This slide serves as a reminder that overall goodness of fit involves
reference to a saturated model and for the classic-type model we are
dealing with, such models have zero discrepancy.




Recall our lavaan example

# Step 1: Specify model

mod.l <- 'yl ~ x1
y2 ~ x1
y3 ~ vyl + y2°

# Step 2: Estimate model

mod.l.fit <- sem(mod.l, data=k4.dat)

# Step 3: Extract results

summary (modl. fit)
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Here, once again, is the generic example model from the module “Brief
Intro to Lavaan”. Again, three steps in lavaan:

(1) specify model using lavaan’s code,

(2) use the “sem” function to estimate the parameters (“fit”) for the
specified model, and

(3) extract information from the fitted object.
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Recall lavaan Results.

lavaan (0.5-12) converged normally after 31
iterations
Number of observations a0
Estimator ML
Minimum Function Test Statistic 17.729
Degrees of freedom 2
P-value (Chi-square) 0.000

We seek a p-value for the model that is GREATER than 0.05, which
would mean no significant discrepancy between model and data. Here,
by any usual measure, this discrepancy is large and model fit is poor!
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Here in blue is output in R. Now we understand that a chi-square of 17
with 2 df and a p-value less than 1 in 1000 indicates a large
discrepancy between data and model-implied covariances.
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Modification Indices:

### Request Modification Indices

summary (modl.fit, modindices=TRUE)

Modification Indices for links of a
priori interest.

lhs op rhs mi epc
vyl ~~ y2 0.014 0.000
y3 ~~ x1 16.119 0.005
y2 ~ yl 0.014 0.056
¥y3 ~ x1 16.119 0.683

“mi” = modification index. “epc™ = expected parameter change.

‘ Looking for “mi” values larger than 3.84 (approximately). ‘
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When we have a discrepant model, we need help sometimes in
knowing where to look for suggested changes. Lavaan like all sem
software can compute “modification indices”. These are uninformed
suggestions that should not be followed blindly.

In this case, we already know what the logical candidates for additional
paths are. If we have some experience with SEM and with this system,
we will have already thought about some of the reasons variables might
not be conditionally independent.

Of course we could just saturate our models at the outset, looking for
everything and then just prune paths. That is fine for exploratory
modeling, but not good practice for confirmatory modeling.

Here | show results for the two missing connections. Shown are both
correlations and directed relationships, both of which would yield
similar improvements in model fit, though mean very different things
scientifically.

We can ignore the epc, but the mi is an estimated reduction in model
chi-square we would presumably obtain by including that link.
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Poor GOF suggests we add links and look for improved fit.

Model found to be inadequate Suggested Improvement
Vs Ay )
~

| Note: The “single-degree-of-freedom chi-square criterion” = 3.84
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Based on what we have seen and what we know about the variables, we
would be likely to add a directed path from x1 to y3. This is still not a
saturated model, so we will still get a test as to whether it is as good as
a saturated model.
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/ X, \ Model #2
# Step 1l: Specify model

Y2 Yi
™ |mod.2 <- 'yl ~ x1
A 4 y2 ~ x1
V3 yvy3 ~ yl + y2 + x1'

# Step 2: Estimate model

mod.2.fit <- sem(mod.2, data=k4.dat)

# Step 3: Extract results

summary (mod.2.fit)

&2 USGS

For Model 2, we add the bit in red to complete the code.
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What is our GOF now for Model 27?7

lavaan (0.5-12) converged normally after
Number of observations

Estimator

Minimum Function Test Statistic
Degrees of freedom

P-value (Chi-square)

37 iterations

90

ML
0.014
1
0.906

Fit now is “very close”.

&2 USGS

Adding the link made a big different. Our results imply y1 and y2

cannot explain all effects of x1 on y3.
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We can do a formal test of ““significant improvement™.

Model 1
Minimum Function Test Statistic 17.729
Degrees of freedom 2
P-value (Chi-square) 0.000

Model 2
Minimum Function Test Statistic 0.014
Degrees of freedom 1
P-value (Chi-square) 0.906

We had a drop in chi-square of 17.715 units with 1 path added.

This greatly exceeds the single df chi-square test criterion of 3.84.
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Formally, here is where we would rely on the single-degree-of-freedom
chi-square test. The observed drop of 17.715 greatly exceeds the
criterion of 3.84 for a classical, p-value based hypothesis test.

16



Option 2: Using ANOVA function to compare models.

> anova(mod.l.fit, mod.2.fit)

Df AIC BIC Chisqg Chisgdiff Df diff
Pr (>Chisq)
mod.2.fit 1 750.54 770.54 0.014
mod.l.fit 2 766.26 783.75 17.729 |17.715 |1 2.566e-05
dif 1 15.72 13.21

Gives us same chi-square test result
Note: “anova” also giVeS us AIC as our by_hand Comparison.
and BIC comparisons.

&2 USGS 7

We can perform likelihood-ratio tests for a set of models using the
‘anova’ function with a lavaan object. Aside from giving AIC values
for models to compare, it also automates a chi-square comparison
between models.
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Question 2: Are all the links supported by the model?

/TN

It is possible to test each path using a classical, p-value based approach.

However, multi-testing produces invalid p-values and many prefer an
“information™ approach.
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OK, we have made sure we are not missing major links in our model.
Only now can we begin to address the question of whether we have
paths in the model that are not supported by the data.

18



Information-theoretic Approach to Model Comparisons:
The Akaike Information Criterion (AIC).

The AIC can be computed directly from the Model Fit Function.

AIC = X2 +2g

where ¢ = number of estimated parameters in model

note: the first term in AIC is the degree of discrepancy.
the second term is a parsimony adjustment for model complexity.
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Interest in AIC for model comparison has grown in biology. There are
lots of important points that could be made about this, but I will save
that for another time and place. What is most relevant, it to understand
that since classical SEM is a model-centered, likelihood-based
approach, AIC is a direct computation from the Model Fit Function.

A key reference for the use of AIC is

Burnham, K.P. and Anderson , D.R. 2002. Model Selection and
Multimodel Inference. 2" Ed. Springer Verlag.

There is a Forum of viewpoints provided in Ecology recently that
discuss the merits of p-values and AIC.

http://www.esajournals.org/toc/ecol/95/3

19



The classic AIC is an asymptotic property, so it makes sense to
adjust for sample size in small samples (=AICc).

When the ratio of parameters to samples is large (i.e., information is
low), we use

AlCe = AlC+| 2444+
A—g—1

where ¢ = number of estimated parameters in the model and
n = the number of samples

(Note: AICc not theoretically defined for models with multivariate responses,
included latent-variable models. It may be useful nonetheless.)

=< USGS 2

At the moment, for moderate to small samples (250 samples or less),
the AICc seems like a good choice for model selection.

With the AICc, we adjust the AIC for the ratio of information/samples
to parameters in the model. This is a reasonable suggestion because it
takes information to estimate parameters and the ratio of information to
parameters is a handy way to discuss sample size recommendations,
though such things are truly not simple.

Anyway, the AICc has a more complex parsimony correction term than
does the AIC (which is just 2q), as shown in the slide.

20



AIC comparison is approximate.

The AIC difference criteria

AIC diff support for equivalency of models
0-2 substantial

4-7 weak

> 10 none

These apply to AICc as well.

Burnham, K.P. and Anderson, D.R. 2002. Model Selection and
Multimodel Inference. Springer Verlag. (second edition), p 70.
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Whether one is using the AIC, AICc, or BIC, the guidelines for simple
interpretations are the same.
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Let’s compare three models

Model 1

e

Model 2

)

1

)

/ T

)

!

Model 3

Xy

y

{

Now, we will include a saturated model (Model 3) in the set.

&2 USGS

N

Yi

(3
[

Since the utility of AIC shines when comparing a set of models, here
we throw in a third model, which allows y1 and y2 to have correlated

errors.
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Model #3

Ay
f// \\\\ # Step 1: Specify model

med.3 <- 'yl ~ x1
y2 ~ x1
¥y3 ~ vyl + y2 + x1
yl ~~ y2'

# Step 2: Estimate model

mod.3.fit <- sem(mod.3, data=k4.dat)

# Step 3: Extract results

summary (mod.3.fit)

[
[
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For Model 3, we add the bit in red to specify an error correlation.

23



To compute AICc automatically, we use “lavaan.modavg.R™.

# need lavaan.modavg.R function

library (AICcmodavg) # prerequisite package
source ("lavaan.modavg.R") # from source below¥

aictab.lavaan(list(mod.l.fit, mod.2.fit,
mod.3.fit), c(“Modell", “Model2“, “Model3”))

Model selection based on AICc

K AICc |Delta_AICc |AICCcWt Cum.Wt LL
Model2 8 751.25 0.00 0.76 0.76 -367.27
Model3 9 753.54 2.28 0.24 1.00 -367.26
Modell 7 766.73 15.47 0.00 1.00 -376.13

* "http://jarrettbyrnes.info/ubc_sem/lavaan_materials/lavaan.modavg.R"

2ZUSGS ’ Model 2 judged superior model to Model 1 or 3. o

Jarrett Byrnes from Univ. Mass at Boston has developed a function for
computing AlCc for lavaan models. It can be obtained from his website
at:

http://jarrettbyrnes.info/ubc_sem/lavaan_materials/lavaan.modavg.R

Using this function allows us to simply compute the AICc differences
for a candidate set.

The simplest way to evaluate a set of models is to rank them by AlCc
values and look for the smallest value. For a difference between
models to be “important-ish”, the Delta-AlCc should be greater then
2.0. If the difference is less than that, | might be inclined to choose the
model with the fewer paths, since in a situation the evidence suggests
that adding a path does not improve the model substantially.
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Combining models permits inference based on AICc Weights.

Model selection based on AICc :

K AICc Delta AICc AICcWt Cum.Wt LL
Model2 8 751.25 0.00 0.76 0.76 -367.27
Model3 9 753.54 2.28 0.24 1.00 -367.26
Modell 7 766.73 15.47 0.00 1.00 -376.13

f

Akaike weights, which represent the
relative likelihoods, give us an additional
tool for comparing models involving the
whole set.
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There is a bit more that can be done beyond computing delta AlCc.
Here | show output from the command given on the previous slide.
There are a few things here, including:

AlCc
Delta_AlCc
AlCcWt

Other things presented in upper table include Cumulative weight and
the raw log likelihoods, neither of which are important for our
discussion here.

Reference for this material.

Anderson, D. (2008) Model Based Inference in the Life Sciences: A
Primer on Evidence. Springer Verlag. (p 89)
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More of the output for Model 2.

summary (mod.2.fit) |

Parameter estimates:
Estimate Std.err Z-value P(>|z])
Regressions:
yl ~
x1 0.400 0.081 4.911 0.000
y2 ~
x1 0.875 0.367 2.381 0.017
y3 ~
vl 0.059 0.017 3.423 0.001
y2 0.009 0.004 2.422 0.015
x1 0.068 0.015 4.419 0.000
Variances:
vl 0.460 0.069
v2 9.362 1.396
v3 0.012 0.002
|
= USGS While P-values suggest all links important, explicit 26

model comparison needed to support that assertion.

Here are the basic parameter results. Note you can count the 8
parameters here that are shown as K for Model 2 on the previous page.

We now can begin to interpret results. Generally not a good idea to
worry about interpretation before selecting a model that (1) contains all
important links and (2) is found to be the best choice amongst model
options.

Glancing at the p-values for the parameters provides us with another
diagnostic, much like the modification indices. WE SHOULD NOT
TRUST THE PARAMETER P-VALUES AS A SOLE SOURCE OF
INFORMATION. To elaborate, the overall model has a behavior that
we are evaluating. It is not uncommon for parameter p-values to be
greater than 0.05, but then when you remove the associated link from
the model, overall discrepancy goes up significantly. TO REPEAT,
PARAMETER P-VALUES ARE ONLY DIAGNOSTICS, NOT
DEFINITIVE SOURCES FOR DECISIONS.
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Now, we have our final model and can look closely at results.

|summary(mod.2.fit, rsg=T, standardized=T)

or

|standardizedSolution(mod.2.fit, type = "std.all")

> standardizedSolution(mod.2.fit, type="std.all")
lhs op rhs est.std se z pvalue
1 y1 ~ x1 0.460 0.094 4.911 0.000
2 y2 -~ x1 0.243 0.102 2.381 0.017
3 y3 ~ ¥y1 0.301 0.088 3.423 0.001
4 y3 ~ y2 0.195 0.081 2.422 0.015
5 y3 ~ x1 0.399 0.090 4.419 0.000

Now standardized estimates are obtained.
ZUSGS

Now we are ready for the scientific interpretation of quantitative
parameter estimates. In this case, we wish to look at the relative
magnitudes of the standardized parameters.

Another module discusses the interpretability of standardized solutions
and so you should know that material before going too far into
interpretations. Here | adopt a simple approach using classic
standardized parameters.

There are a couple of different ways we can ask for standardized
parameters.

Note that lavaan computes “std.lvs” which you want to ignore in favor
of “std.all”.
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Visual summary of selected model.

R= 21

Numerous possible options here. These are standardized coeficients.

&2 USGS 2%

Here is one of the many ways you might present your results, along

with various tables of total effects in the models or scenario findings.

You should also present model fit results.

A separate module will be developed soon for a more complete
discussion of results presentation. For now, consulting some of the
published papers for examples would be a good idea.
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Revisiting the SEM perspective on model selection.

(1) In SEM, we seek to make a decision based on a priori causal
knowledge and the weight of the data.

hypothesized
cause

Theoretical knowledge, Statistical inference
causal assumptions, > | < and weight of new
and hypotheses evidence.

causal
inferences

(2) There are times we let theory override data. This is a very

primary practice in “modeling”, but not common in “statistics”.
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OK, after considering all this quantitative weighing of evidence in your
data set, | want to again emphasize you still have to consider many

things in decide what you believe about the system under investigation
from all your information sources. The next slide gives one example of

the latitude I suggest you give yourself.
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Sometimes a model retains a link even though the parameter is
not consistently different from zero.

R*=0.19 R?=0.39
A nigriscutis _&’A nigriscutis| ¢
1999 2000
23
i 44
f 22 0.14
umber of -20 hange in
=11
Stems Stems R? = 0.06
1
-.14 \
” - 2 -23
A. lacertosa A. lacertosa L& % Available online at www.sciencedirect com
1999 61 2000 . . o @omer Riologica
A ontro.
R*=0.0 R? = 0.46 ELSEVIER
Fig. 2. Model results for 1999-2000. Single-pointed arrows indicate
causal paths. Double-pointed arrows represent correlations, which Temporal dynamics of leafy spurge (Euphorbia esula) and
were modeled as correlated errors. Path coefficients are standardized two species of flea beetles (Aphthona spp.) used as
and all solid arrows indicate significant paths at P < 0.05; size of the biological control agents
arrow correlates with the magnitude of the path coefficient. The dashed Diane L. 1 13 B. Grace®
3 TR g jane L. Larson™* and Jam es B. Grace!
arrow indicates a nonsignificant path that remains in the model. R - 5 3 ; -
values are shown for dependent variables.

ZUSGS

Here is one of our examples where a “non-significant” path represents
the dependence of a obligate biocontrol agent on its only food source.
Leaving the path in the model, versus taking it out, has very small
effects on other parameters. Scientifically, though, it would be a radical
claim for either the causal processes operating in this system or its
future behavior to claim no causal effect of the food on the herbivore.
So, the path was left in the model, but noted as non-significant in
conventional tests.

Later studies on this system validated the approach we used in this
case.
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