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In this module I consider an important “third” variable type, the
composite. Composites are similar to latent variables, but with some
fundamentally important differences. This is currently a very brief
introduction to the topic, so going to the primary reference below will
definitely be helpful.

An appropriate citation for this material is

Grace, J.B. and Bollen, KA. 2008. Representing general theoretical
concepts in structural equation models: the role of composite
variables. Environmental and Ecological Statistics 15:191-213.

(http://www.odum.unc.edu/content/pdf/Bollen%20Grace%20Bollen%2
0(preprint%202008)%20Environ%20and%20Ecol%20Stats.pdf)

Notes: IP-056512; Support provided by the USGS Climate & Land
Use R&D and Ecosystems Programs. | would like to acknowledge
formal review of this material by Jesse Miller and Phil Hahn,
University of Wisconsin. Many helpful informal comments have
contributed to the final version of this presentation. The use of trade
names is for descriptive purposes only and does not imply endorsement
by the U.S. Government. Last revised 20141216. Questions about this
material can be sent to sem@usgs.gov.







1. In the simple case, we can use composites to represent
collective effects of a set of variables.
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Composites are a type of latent variable, but they differ from
conventional LVs in some important ways. Certainly they are
abstractions, but in our models their values are computed from other
variables. In this example we are essentially using a composite variable
“Comp” to capture the collective effects of a set of causes on some
response. Thus we are translating the model on the left into the model
on the right so we can represent the joint effects of causel and cause2
with a single path (the path from Comp to response.

In this situation we refer to the observed indicators causel and cause2
as “cause indicators” or sometimes referred to as “formative
indicators”.

I like to use the hexagon shape to represent the composite. However,
note that often it is represented in presentations by ovals, since it is a
form of latent variable.




2. Composites are abstractions, and we must declare them.

Composites have an implied set of

scores, similar to regular latent
variables. ‘ causel ‘ cause2 ‘

To specify composites in lavaan, we need to Comp )0
conceptualize a composite as a latent

variable with no error (so, error variance is Y

set = 0). response

Like with regular latent variables, introducing a composite variable
into a model potentially adds two parameters to our model, one for
the variance of the composite and one for its scale (intercept in this
case). So, we need to fix some parameters to specific values to
identify our model.
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Composites are technically latent variables without variance. The
absence of variance is modeled by setting the error variance to zero.

Another way of thinking about this is that the composite variable is one
with a predicted set of values, one for each case in the dataset. For this
model, the Comp scores are equivalent to

yhat = b0 + bl*causel + b2*cause2
where the bs come from the model
responses ~ Im(causel + cause?2).

We will demonstrate this as a method of compute composites by hand
later in the presentation.




3. We can create composites with lavaan syntax.
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¥ we declare composite as effects of two variables

Cmod.l <- ‘Comp <~ l*causel + cause2
response ~ Comp'

We use “1*causel ’to set scale of the composite.
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Lavaan has a special operator for composites. Just like with latent
variables, we have to give the program some information. Here we
explicitly indicate that the composite is on the same scale as the first

indicator by pre-multiplying causel by 1.




3 (cont.). Creating composites with lavaan syntax - explained.

When we say “Comp <~ 1*causel + cause2”, we are specifying one of the
paths linking the composite with an indicator (in this case, “causel™).

‘cause] ‘ |CEIUSE‘2|
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Comp 0

v D

response

Lavaan automatically creates the variable “Comp™ in this case and sets
its error variance to zero.
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Here is a little more behind-the-scenes information. This slide shows
more explicitly what the syntax in the previous slide does.

Note that we could have set the scale for cause?2 instead of causel.
Also, we could use a different value from 1. For example, we could use
the value that came from running the model without the composite.

Further, we could set both values from causes to COMP, but to do that
we would need to use the two exact values obtained from running the
model without the composite (slide 2 left figure).




4. We can also compute composite scores by hand.

‘causel ‘ ‘causez‘ |causel ‘ ‘cause2|
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First, run model without Use coefficients to Use composite
composite and obtain calculate composite  scores as a variable.
coefficients. scores.

The coefficient ¢/ represents collective effects and is only meaningful in
standardized units (normally, its raw value is 1.0).
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It is useful to understand how to compute composite scores by hand.

One reason to do this is because lavaan can have problems solving
models containing composites sometimes. Various tricks for helping
lavaan include (a) premultiplying causel by the exact coefficient found
from the model that omitted composites. In rare cases, using the
composite scores compute by hand may be the only way to
successfully model.

This figure indicates how we can have the values of the composite
variable and model with it directly. An example of this follows.




5. An illustration. 2 USGS

## lavaan model
library(lavaan)

# model without composite
mod.l <- 'response ~ causel + cause2'

mod.l.fit <- sem(mod.l, data=sim.dat)

summary (mod.1l.fit, rsgq= T)

Estimate Std.err Z-value P(>|z])

Regressions:
response -~

causel 0.780 0.108 7.206 0.000

cause2 0.749 0.230 3.249 0.001
Variances:

response 2.649 0.530
R-Square:

response 0.731 7

### Simulate some data for an example
library(MASS)

mu = ¢(10, 20)

Sigma <- matrix(c(10, 3, 3, 2), 2, 2)

set.seed(1, kind = NULL, normal.kind = NULL)
xs <- mvrnorm(n = 50, mu, Sigma)

causel = xs[,1]

cause2 = xs[,2]

set.seed(3, kind = NULL, normal.kind = NULL)
yerror = rnorm(50, mean=0, sd=2)

response <- 0.812*x1 + 0.673*x2 + yerror
sim.dat <- data.frame(causel, cause2, response)

Now you can use the R code on the slide to generate the results shown.




5. An illustration (cont.).

# lavaan model with composite
Cmod.1l <- 'Comp <~ l*causel + cause2
response ~ Comp'

Cmod.l.fit <- sem(Cmod.l, data=sim.dat)

summary (Cmod.1l.fit, rsg=T, standardized=T)

Estimate Std.err Z-value P(>|z]) Std.all

Composites:
Comp <~
causel 1.000 0.761
cause?2 0.960 0.389 2.471 0.013 0.343
Regressions:

response =~
Comp 0.780 0.108 7.206 0.000 0.855
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R-Square:

interpretable coef
response 0.731

o
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Again, you can use the “sim.dat” data created from the R script in the
notes of slide 7 and the lavaan code in the slide here to generate the
output.




5. An illustration (cont.).

# compute composite scores “by hand”
Comp.a <- 0.780*causel + 0.749*cause2

# create new data set
dat2 <- data.frame(causel, cause2, response, Comp.a)

# model direct effect of composite on response
Cmod.2 <- 'Comp.a ~ causel + cause2
response ~ Comp.a'

Cmod.2.fit <- sem(Cmod.2, data=dat2)
summary (Cmod.2.fit, rsg=T, standardized=T)

Estimate Std.err Z-value P(>|z]|) Std.all

Regressions:
response =~
Comp.a 0.999 0.086 11.663 0.000 0.855
R-Square:
response 0.731 S~
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Here we use some R code to compute composite scores (“Comp.a”) by

hand.
We then create a new dataset with the composite scores = “dat2”

We can model using the composite scores as observed variables.




6. We can use composites to represent general concepts.
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Body size and the division of niche space: food and
predation differentially shape the distribution of
Serengeti grazers
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Composites are very handy for use in addressing ecological questions.
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7. And we can use them to compare apples and oranges (with

care in interpretation).
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There capacity to let us make general comparisons is one of their most

appealing features.
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8. We can also use composites as devices.

We can model this using
Consider this nonlinear relationship. ~ polynomial regression:
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Centering a variable before squaring | # center x before squaring
it reduces the autocorrelation x <- x- mean (x)
between polynomial terms. x2 <- x"2
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But, composite are also handy devices, for example in polynomial
modeling of nonlinear relations. What is different here is that one of
the cause indicators, x-square, is really a device rather than a separate
variable. Otherwise, the compositing process is similar to the case of
compositing independent causes. This does not hold, however, when
the nonlinearity is endogenous. In that case, the x-square term needs
special consideration. This situation is covered in a separate module,

“Composites for endogenous nonlinearities”.
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