
This module seeks to illustrate certain basic ideas related to SEM 

through a description of “path rules”. These rules were developed by 

Sewall Wright many years ago, but still represent some fundamental 

ideas important for SEM practitioners to understand.  
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For this presentation, it is helpful to adopt a linear Gaussian 

approximation. One thing this allows us to do is to summarize our data 

in the form of a covariance matrix, which when standardized, is a 

correlation matrix. 

Judea Pearl uses the same approach to connect historical SEM to his 

nonparametric, generalized model in 

Pearl, J. 2013. Linear models: a useful “microscope” for causal 

analysis. Journal of Causal Inference. 1:155-170.  

 

Note that the principles that apply to path coefficients extend to more 

general and more complex (e.g., non-linear, non-Gaussian) functional 

relationships. 
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It is important to make the distinction between covariances and 

correlation, but also to show the simple relationship between the two.   
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We need to understand that the raw values matter when it comes to 

coefficients. Some statisticians don’t like standardized parameter 

estimates because they involve combining multiple quantities. This 

issue is discussed and resolved in 

 

Grace, J.B. and Bollen, K.A. (2005) Interpreting the results from 

multiple regression and structural equation models. Bulletin of the 

Ecological Society of America 86:283–295. 

http://dx.doi.org/10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2  
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It is useful to know that exogenous correlations/covariance are not 

computed by SEM packages. Rather, we can pull them directly from a 

covariance matrix. This practice is predicated on the first rule of path 

coefficients.  
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Before moving on, we should realize that correlations in models 

actually imply some causal process involving hidden variables. 

Essentially these are latent processes of some type, but we generally 

don’t go so far as to represent them that way, UNLESS, we are doing 

latent variable modeling (see separate modules for that).  



7 

When variables are connected by a single causal pathway, coefficients 

are “simple”. This means they will correspond with the observed 

correlations. 
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We multiply coefficients along compound pathways to get the expected 

net relationship. Since the second rule tells us that for this model the 

path coefficients should be the observed correlations, we can then 

compute the indirect effect of x1 on y2, which also represents the 

implied correlation between these two variables.   

This then allows us to introduce and illustrate a critically-important 

concept “conditional independence”. If the model holds here, then once 

we know the values for y1, we don’t need the values of x1 to predict y2. 

This is why we say that  x1 and y2 are independent, once we condition 

on y1.  
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We can reject the conditional independence model (i.e., a purely 

indirect effect) by seeing that things don’t add up.  
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Failure to find conditional independence implies some other process at 

work. Maybe it is something you didn’t even suspect was important! 

Note, that now that we have changed the model, some of the parameter 

estimates are different from those in the previous model. When you 

complete this module, you should be able to look at a model and know 

which paths will be simple covariances and which ones will be 

complex parameters representing “partial” effects. 
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Continuing, when two variables are connected by more than one causal 

pathway, parameters/coefficients are not simple anymore. 

Note that we cannot pick the values out of the covariance matrix when 

there are partial effects in the model.  
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Returning to those pesky exogenous correlations, they have causal 

interpretations, but not clean ones. There are two causal connections 

between xs and y, but the effects on y are shared across the xs in this 

model.  
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A key part of our model is the “influences of other factors” or errors of 

prediction. The estimates for these quantities are computed from the 

other information. They can be represented in different ways and these 

are important to know for a variety of reasons.  

First, we can express the variance explained for an endogenous 

variable by giving the R-square. This represents 1-error variance in 

standardized terms. 

Second, we can actually present the quantity of error variances or zetas, 

either in raw or standardized units. 

Third, if we wish to treat error variables like true causal influences, 

then we might use path coefficients for their effects. These = the square 

roots of the error variances (e.g., sqrt(0.84) = 0.92) or alternatively, the 

square roots of 1-R-square. 
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Considering models with joint responses are quite instructive for 

multiple reasons. Here our focus is on estimating residual 

correlations/covariances. 

The basic point is that the implied correlation between two joint 

responses is the product of the path coefficients connecting them. 

In this case, the observed correlation is 0.60 while the model-implied 

correlation is 0.20. This is a pretty big difference, implying a residual 

correlation between zeta1 and zeta2. 
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When the observed correlation is non-trivially different from that 

implied by their joint responses to x1, in this case, it implies some 

other (latent) factor. This additional connection is expressed in the form 

of a residual correlation among errors. 

Our goal here is to compute the residual correlation by hand.  

Step 1: Compute the R-squares for the two responses (0.16 and 0.25 in 

this case. 

Step 2: Compute the path coefficients for the error influences on the 

variables. Here we subtract the R-squares from 1.0 to get the error 

variances, then take the square roots of those to get the path 

coefficients (0.92 and 0.86 in this case).  

Step 3: The total correlation between y1 and y2 will be the sum of the 

two compound pathways connecting them. 

 Path 1: 0.50*0.40 = 0.2 

 Path 2: 0.92*0.86*? = the difference 

This leads us to an estimate of 0.50 for the standardized error 

correlation. 
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Total effect is an important concept. On the next slide we will contrast 

“total effect” with “total correlation”. For the moment, we simply 

consider that the total effect represents the causal influence of a 

predictor on a response when all mediating variables are allowed to 

change in response to changes in the predictor. 

In this case, let’s consider the total effect of x1 on y2. There is a direct 

component = 0.15. There is also one indirect path through y1 whose 

effect is 0.64*0.27. 

So, the total effect is the sum of the paths, or 0.15 + (0.64*0.27) = 0.32. 
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We already introduced this basic concept, but the total correlation 

between two variables represents the sum of all pathways connecting 

them, including causal and non-causal paths. Here, the correlation 

between x1 and x2 is considered a non-causal path because we have 

not included in our model a variable to explain that effect. 

The computations for partial effects are defined as being those that will 

recover the net correlations observed in the data. 
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Simpson’s paradox was the observation that adding variables changes 

the partial effects of other variables, often in radical ways. 

Here we illustrate the common case where the observed correlation is 

very different from the calculated causal connection. There is no real 

surprise here except that we often try to understand causal relations 

between variables using bivariate patterns when we know that is the 

wrong way to approach the problem. 


