
In this module, I discuss a few points about the anatomy of models. 

The goal here is to introduce some terminology and to allow those not 

yet familiar with SEM to understand  better what is being expressed in 

visual SEM presentations. 

 

A citation that can be used for the information included in this module 

is: 

Grace, J.B. (2006) Structural Equation Modeling and Natural Systems. 

Cambridge University Press 
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Here is an interesting quote articulating some of the reasons graphical 

models are fundamentally important. 

"Graphical models are a marriage between probability theory and 

graph theory. They provide a natural tool for dealing with two 

problems that occur throughout applied mathematics and engineering -- 

uncertainty and complexity.  

Many of the classical multivariate probabilistic systems studied in 

fields such as statistics, systems engineering, information theory, 

pattern recognition and statistical mechanics are special cases of the 

general graphical model formalism -- examples include mixture 

models, factor analysis, hidden Markov models, Kalman filters and 

Ising models. The graphical model framework provides a way to view 

all of these systems as instances of a common underlying formalism. 

This view has many advantages -- in particular, specialized techniques 

that have been developed in one field can be transferred between 

research communities and exploited more widely. Moreover, the 

graphical model formalism provides a natural framework for the design 

of new systems." --- Michael Jordan, 1998.  

From http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html 
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There is a wealth of terminology that has developed in different 

disciplines related to graphical models. Some of it is redundant across 

traditions. However, if you think about our science map and how 

different fields are disconnected to a large degree, it is not surprising. 

In this slide I show some of the terminology from the field of graphical 

modeling. It is worth knowing this additional terminology because in 

cases where one wishes to do formal causal analysis, such terms are 

essential.  



4 

In this slide I want to distinguish three different but overlapping 

conceptualizations of networks, “graphs”, “causal diagrams”, and 

“models”.  

Graphs describe only general architectural features and are seldom 

used in SEM, except in teaching.  

Causal diagrams, on the other hand, are a newer invention of Judea 

Pearl* (well, he actually invented them a while back, but we are only 

now seeing their clear value in SEM applications). Causal diagrams, in 

the narrow sense of that phrase, are actually a subset of the larger 

family of graphical models. They are meant to be a template of the 

system that can be used for deciding what data need to be collected to 

estimate particular effects. We can develop them without regard for 

what variables we actually have data for, which permist some deeper 

reasoning. 

The “model” represents the relations among variables and errors of 

prediction. 

*Pearl, J. 1995. Causal diagrams for empirical research. Biometrika 

82:669–710. 
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We often explain SEM using terminology made possible by simplified 

implementations such as Gaussian linear relations. We should not 

confuse this simplification with SEM itself, which is a framework for 

analysis and accommodates any statistical form. 
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Exogenous variables have no arrows pointing at them (in models at 

least), endogenous do. Often parameter estimates are shown next to the 

arrows connecting variables, though not always. Here I use the Greek 

symbol for a small case gamma to represent links between exogenous 

and endogenous variables and betas to line endogenous variables. This 

is just common notation in many SEM implementations. 
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Each pathway tracing a route from a predictor to a response represents 

a distinct mechanism. In this slide I am trying to avoid a common 

misrepresentation related to the “effect” terminology (e.g., direct 

effect). That terminology causes lots of problems in presentations 

because it seems to confuse results with conclusions. It is helpful to be 

explicit that these are only “effects in the model”, not in the real 

system. Two things are meant here by this statement. 

(1) Caution must be taken when interpreting a direct effect in an SEM 

because in reality this “direct” effect is likely mediated by an 

unmeasured variable. In real systems, we assume that effects can be 

infinitely decomposed and ultimately operate at the quantum level. 

Thus, all true effects are indirect but since we are working with 

observed variables in our models, the effects actually specified in 

the models are simplified down to direct and indirect effects (“in 

the model”). 

(2) The conclusion that there is an “effect” depends on some causal 

assumptions that are not actually tested with the data. Thus, “effect 

in the model” clarifies that we recognize that critical assumption.  
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Here is some terminology related to model architecture. Saturated 

models have links between all the variables (more strictly true, we have 

no model degrees of freedom). Saturated models represent a special 

class of model because they allow for everything to add up, meaning 

we can completely recover the observed matrix of covariances when 

our model is saturated. Unsaturated models have testable implications, 

however. Specifically, for Model A, the model hypothesizes that the 

indirect effect of x1 on y2 equals the observed covariance between 

those variables. This may not be empirically true, which would imply 

that there is some other connection between x1 and y2, such as in 

Model B. 

Model C is “recursive” in that causation flows without loops. Model C 

also allows for x1 and x2 to be correlated for some unspecified reason. 

Nonrecursive models, such as in Model D, have more complex causal 

relationships. Here I show the case of a reciprocal interaction, which is 

a type of causal loop. To understand such models, we really need to 

consider the temporal dynamics that underlie the model, along with the 

assumptions required for collapsing time.  

 


